2024-09-18 13:04:07 -04:00

506 lines
13 KiB
C++

// =====================================================================================================================
// Copyright 2024 Medusa Slockbower
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =====================================================================================================================
#ifndef OPEN_CPP_UTILS_DIRECTED_TREE_H
#define OPEN_CPP_UTILS_DIRECTED_TREE_H
#include <vector>
#include <deque>
#include <algorithm>
namespace open_cpp_utils
{
/**
* \brief Class for creating a directed tree
* \tparam T Type of the data associated with each node
*
* The tree is a series of child nodes in forward linked lists.
*
*/
template<typename T>
class directed_tree
{
// Forward Definitions =================================================================================================
public:
class breadth_first;
class pre_order;
class in_order;
class post_order;
class unordered;
private:
struct Node_;
// Typedefs ============================================================================================================
public:
using data_type = T;
using node = uint32_t;
using node_queue = std::deque<node>;
private:
using hierarchy = std::vector<Node_>;
using storage = std::vector<data_type>;
// Constants ===========================================================================================================
public:
static constexpr std::integral_constant<node, 0> root{};
// Data Structures =====================================================================================================
private:
struct Node_
{
enum flags
{
VALID = 0x0001
};
node parent, child, prev_sibling, next_sibling;
uint32_t flags, depth;
Node_() : parent(0), child(0), prev_sibling(0), next_sibling(0), flags(VALID), depth(0) { }
};
// Functions ===========================================================================================================
public:
// Constructors & Destructor -------------------------------------------------------------------------------------------
/**
* \brief Default constructor, creates tree with empty root
*/
directed_tree() : graph_{ Node_() }, data_{ data_type() }, freed_{ } { }
directed_tree(data_type&& data) : graph_{ Node_() }, data_(data), freed_{} { }
directed_tree(const data_type& data) : graph_{ Node_() }, data_(data), freed_{} { }
~directed_tree() = default;
// Tree Navigation -----------------------------------------------------------------------------------------------------
/**
* \brief Check whether a node is valid. O(1)
* \param id Node id to reference
* \return Whether the valid flag is true in the node
*/
[[nodiscard]] bool valid(node id) const { return graph_[id].flags & Node_::VALID; }
/**
* \brief Get the parent of a node. O(1)
* \param id Node id to reference
* \return Node id of the parent
*/
[[nodiscard]] node parent(node id) const { return graph_[id].parent; }
/**
* \brief Get the first child of a node. O(1)
* \param id Node id to reference
* \return Node id of the first child
*/
[[nodiscard]] node first_child(node id) const { return graph_[id].child; }
/**
* \brief Get the first child of a node. O(1)
* \param id Node id to reference
* \return Node id of the first child
*/
[[nodiscard]] node last_child(node id) const
{
node c = first_child(id);
while(c != 0) { if(graph_[c].next_sibling == 0) break; c = graph_[c].next_sibling; }
return c;
}
[[nodiscard]] int child_index(node id)
{
if(id == root) return -1;
int i = 0;
while(id != root) { id = prev_sibling(id); ++i; }
return i;
}
/**
* \brief Get the previous sibling of a node. O(1)
* \param id Node id to reference
* \return Node id of the next sibling in the linked list
*/
[[nodiscard]] node prev_sibling(node id) const { return graph_[id].prev_sibling; }
/**
* \brief Get the next sibling of a node. O(1)
* \param id Node id to reference
* \return Node id of the next sibling in the linked list
*/
[[nodiscard]] node next_sibling(node id) const { return graph_[id].next_sibling; }
/**
* \brief Get the left most child of a node. O(log(n))
* \param id Node id to reference
* \return Node id of the left most child
*/
[[nodiscard]] node left_most(node id) const
{
node current = id;
while(id = first_child(current)) current = id;
return current;
}
/**
* \brief Get the depth of a node
* \param id
* \return
*/
[[nodiscard]] uint32_t depth(node id) const { return graph_[id].depth; }
// Tree Modification ---------------------------------------------------------------------------------------------------
/**
* \brief Get the next id that would be used if insert() were called
* \return Next node id
*/
node next_id() const
{
if(freed_.empty()) return static_cast<node>(graph_.size());
return freed_.front();
}
/**
* \brief Insert a node into the tree as a child of the provided node
* \param data Value to insert
* \param p_id Id of the parent node
* \param last Whether to insert at the back of the array
* \return Id of the inserted node
*/
node insert(const data_type& data, node p_id, int child = 0)
{
// If there are no freed nodes, create a new node and mark it as freed
if(freed_.empty())
{
freed_.push_back(static_cast<node>(graph_.size()));
graph_.push_back(Node_()); data_.push_back(data);
}
// Pop a freed node from the stack
node id = freed_.front(); freed_.pop_front();
node s_id = first_child(p_id);
Node_& node = graph_[id];
Node_& parent = graph_[p_id];
bool back = s_id == 0 ? false : child < 0;
while(child > 0 && s_id != root)
{
s_id = next_sibling(s_id); --child;
back |= (s_id == root);
}
Node_& sibling = graph_[s_id];
if(s_id == parent.child && !back) parent.child = id;
node.next_sibling = node.prev_sibling = 0;
node.parent = p_id;
node.depth = parent.depth + 1;
node.flags = Node_::VALID;
node.child = 0;
if(s_id == 0) return id;
if(back)
{
node.next_sibling = sibling.next_sibling;
node.prev_sibling = s_id;
sibling.next_sibling = id;
}
else
{
node.next_sibling = s_id;
node.prev_sibling = sibling.prev_sibling;
sibling.prev_sibling = id;
}
return id;
}
void swap(node a, node b)
{
Node_& A = graph_[a];
Node_& B = graph_[b];
std::swap(A, B);
if(graph_[B.parent].child == a) graph_[B.parent].child = b;
if(graph_[A.parent].child == b) graph_[A.parent].child = a;
}
/**
* \brief Erase a node in the tree. O(n)
* \param id Id of the node to erase
*/
void erase(node id)
{
if(id == root) return;
// Mark node as invalid and push it to the freed list
Node_& erased = graph_[id];
erased.flags &= ~Node_::VALID;
freed_.push_back(id);
data_[id].~T();
// Update the parent's child
graph_[erased.parent].child = erased.next_sibling;
// Update siblings
if(erased.next_sibling) graph_[erased.next_sibling].prev_sibling = erased.prev_sibling;
if(erased.prev_sibling) graph_[erased.prev_sibling].next_sibling = erased.next_sibling;
// Erase children - essentially breadth first propagation down the tree
node_queue stack{ erased.child };
while(stack.empty() == false)
{
node next = stack.front(); stack.pop_front();
Node_& child = graph_[next];
child.flags &= ~Node_::VALID;
freed_.push_back(next);
data_[next].~T();
if(child.next_sibling) stack.push_front(child.next_sibling);
if(child.child) stack.push_front(child.child);
}
}
// Tree Access ---------------------------------------------------------------------------------------------------------
/**
* \brief Getter for data associated with a node
* \param id Id of the node to access
* \return Reference to the node's data
*/
data_type& operator[](node id) { return data_[id]; }
/**
* \brief Constant getter for data associated with a node
* \param node Id of the node to access
* \return Reference to the node's data
*/
[[nodiscard]] const data_type& operator[](node id) const { return data_[id]; }
// Visitor Pattern -----------------------------------------------------------------------------------------------------
/**
* \brief Traverser-Visitor pattern for accessing the tree
* \tparam V Visitor type.
* \tparam O Order type. Defaults to Pre-Order Traversal.
* \param visitor
*/
template<typename O = pre_order, typename V>
void traverse(V& visitor)
{
traverser<V, O> traverser(*this, visitor);
traverser();
}
// Variables =======================================================================================================
private:
hierarchy graph_;
storage data_;
node_queue freed_;
// Navigation ======================================================================================================
public:
class unordered
{
public:
unordered(directed_tree& graph) : graph_(graph), current_(root) { }
node operator()(node id)
{
while(!graph_.valid(current_) || current_ == root)
{
++current_;
}
id = current_;
current_ ++;
return id == graph_.graph_.size() ? 0 : id;
}
private:
directed_tree& graph_;
node current_;
};
/**
* \brief Breadth first traversal
*/
class breadth_first
{
public:
breadth_first(directed_tree& graph) : graph_(graph), visit_queue_(0) { }
node operator()(node id)
{
id = visit_queue_.back(); visit_queue_.pop_back();
Node_& current = graph_.graph_[id];
if(current.next_sibling) visit_queue_.push_back(current.next_sibling);
if(current.child) visit_queue_.push_front(current.child);
if(visit_queue_.empty()) return 0;
return id;
}
private:
directed_tree& graph_;
node_queue visit_queue_;
};
/**
* \brief Pre-order traversal
*/
class pre_order
{
public:
pre_order(directed_tree& graph) : graph_(graph) { }
node operator()(node id)
{
Node_& current = graph_.graph_[id];
if(current.next_sibling) visit_queue_.push_front(current.next_sibling);
if(current.child) visit_queue_.push_front(current.child);
if(visit_queue_.empty()) return 0;
node next = visit_queue_.front(); visit_queue_.pop_front();
return next;
}
private:
directed_tree& graph_;
node_queue visit_queue_;
};
/**
* \brief In-order traversal
*/
class in_order
{
public:
in_order(directed_tree& graph) : graph_(graph) { }
node operator()(node id)
{
if(id == 0) visit_queue_.push_back(graph_.left_most(id));
id = visit_queue_.front(); visit_queue_.pop_front();
Node_& current = graph_.graph_[id];
if(current.Sibling)
{
if(graph_.next_sibling(current.Sibling)) visit_queue_.push_back(current.parent);
visit_queue_.push_back(graph_.left_most(current.Sibling));
}
return id;
}
private:
directed_tree& graph_;
node_queue visit_queue_;
};
/**
* \brief Post-order traversal
*/
class post_order
{
public:
post_order(directed_tree& graph) : graph_(graph) { }
node operator()(node id)
{
if(visit_queue_.empty()) visit_queue_.push_back(graph_.left_most(id));
id = visit_queue_.front(); visit_queue_.pop_front();
if(id == 0) return id;
Node_& current = graph_.graph_[id];
visit_queue_.push_back(current.Sibling ? graph_.left_most(current.Sibling) : graph_.parent(id));
return id;
}
private:
directed_tree& graph_;
node_queue visit_queue_;
};
/**
* \brief Visitor pattern for traversing the tree
*/
template<typename V, typename O>
class traverser
{
public:
using visitor_type = V;
using order_type = O;
traverser(directed_tree& graph, visitor_type& visitor) : graph_(graph), visitor_(visitor), order_(graph) { }
void operator()()
{
node id = 0;
while(id = order_(id))
{
if(visitor_(graph_[id], id)) break;
}
}
private:
directed_tree& graph_;
visitor_type& visitor_;
order_type order_;
};
};
}
#endif // OPEN_CPP_UTILS_DIRECTED_TREE_H